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LE’ITER TO THE EDITOR 

Walks, trails and polymers with loops 

Y Shapirt and Y Oono 
Department of Physics and Materials Research Laboratory, University of Illinois at 
Champaign-Urbana, Urbana, Illinois 61801, USA 

Received 27 September 1983 

Abstract. Lattice models interpolating between free and self-avoiding random walks are 
investigated. Generating functions are constructed for k-tolerant walks, various trail 
problems, etc. For trail problems the effective field theory describing the global behaviour 
is analysed in the vicinity of the upper critical dimension d,  = 4. Their asymptotic large-scale 
behaviours are the same as those of the self-avoiding walk. Arguments are presented to 
support the same conclusion for much more general classes of walks including k-tolerant 
walks. One of the models exhibits a new tricritical point of order if the fugacity for 
crossing is increased. 

Very recently, there has been renewed interest in the effect of loop formation on the 
statistical properties of polymers (Malakis 1976, Chen 1981a,b,c, Wheeler and Pfeuty 
1981, Family 1982, Rys and Hefrich 1982, Gujrati 1983, Petschek et a1 1983). The 
question is: Is the large scale behaviour of the single polymer (or the self-avoiding 
walk) affected by the presence of rings, doubly occupied bonds, etc.? Most of the earlier 
work suggests a negative answer to this questionS. These results have been reached 
by exact enumeration for trails (Malakis 1976), by a renormalisation group approach 
(Oono 1979) and exact enumeration (Oyama and Shiokawa 1983) for k-tolerant 
walks, and by a real space renormalisation method for polymers with loops (Family 
1982). 

In the present letter, we initiate a more systematic approach by suggesting new 
methods to construct generating functions for generalised lattice polymer models. 
These functions are then transformed into continuum field theories, and analysed via 
momentum space renormalisation group and the &-expansion. General conclusions 
we can draw are in agreement with previous results where they have already existed; 
allowing finitely multiple occupancies of bonds and/or vertices does not change the 
large scale behaviour of the self-avoiding walk. It seems that the free random walk 
behaviour is recovered only without any constraint on the walk. 

First, we define models to be investigated. The k-tolerant walk (Malakis 1976) is 
a random walk which may return to the same lattice site at most k times. In particular 
the 1-tolerant walk is the self-avoiding walk (figure 1). The u-uertex trail is a walk 
which may return to the same lattice site at most U times without passing through any 
bond more than once. Thus loops are formed, but the excluded volume is not ignored 
(as a polymer with fused loops. The a-vertex trail problem is the standard trail 

t Present Address: Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA. 
t One may say that the ‘true’ self-avoiding walk of Amit et al (1983) is an exception, but in this case the 
modification of the self-avoiding walk is far more drastic than the introduction of rings, etc. The authors 
are grateful to the referee who brought our attention to the true self-avoiding walk. 
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Figure 1. A typical k-tolerant walk with k = 5 or higher. 

problem. We call the graph on the lattice made by the trajectory of the walk the 
silhouette of the walk (Domb 1960). In other words, the shadow is an equivalence 
class of walks obtained when we ignore the chronological order of elements (bonds 
and vertices) appearing in trajectories (see figure 2). 

We start our study by looking at the silhouettes of a-vertex trails which mimic 
polymers with loops (the silhouettes of co-vertex closed trails mimic the lattice animal 
with vertices of even degrees only). 

GOR( w) = lim (SASk), (1) 
n-0 

where w is the fugacity of monomers, S y  (a = 1, .  . . , n) are n replicas of Ising-like 
spin variables, and ( ) is the equilibrium ensemble average defined by the Hamiltonian 

-X( w) = tanh-' w SPSP (2) 
( i.1) 
a 

with the summation over all the nearest-neighbour pairs and replicas. We impose the 
following trace rules: 

Tr(Sp)2k = 1, Tr(SS)2k-' = O  for k = 1 , 2 , .  . . , (3) 

l a )  ( b l  

Figure 2. ( a )  Two different trails with one 2-vertex. ( b )  The common silhouette of the 
trails in ( a ) .  
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and 

Tr(Sq)2k(Sf)2f  = a a p  fork,  l = l , 2 , .  . . . (4) 

All other traces of monomials vanish. It is important to realise that the trace or the 
integral is a linear map from the set of all the polynomials to real numbers completely 
defined by the values on monomials, and that we may freely invent this map as long 
as the rule is not inconsistent with the algebraic structure of the variables. The 
requirement (4) introduces an interaction among different replicas which exclude each 
other completely. Therefore, any monomial will give a vanishing trace if it includes 
more than one replica. 

Using the standard Gaussian transformation, we can express the generating function 
as the following functional integral: 

GOR = n-0  lim J" n i,u dq?q'(O)q'(R) exp [ -{ d d r m r ) l ] .  ( 5 )  

If we expand 9[4] in terms of fields and their gradients and keep only relevant terms 
near four dimensions, we obtain 

where m and U are known functions of w and the lattice coordination number, and 
a trivial rescaling of fields has been performed. 

Thus the Lagrangian (6) is exactly that of the cubic model (see, e.g., Aharony 1976 
and references therein). In the limit n -+ 0, there is a second-order phase transition 
which is in the isotropic O ( n )  universality class (Aharony 1976, Newman and Riedel 
1982). Therefore the silhouettes of a-vertex trails or the polymers with loops are in 
the same universality class as that of linear polymers (de Gennes 1972); the formation 
of loops is irrelevant to the scaling behaviour as long as we assign identical weights to 
all the patterns. Increasing the fugacity which controls the number of crossings we 
expect a collapsed phase with U = l /d.  The new tricritical point between these two 
regimes is of o ( E ' ' ~ ) ;  the corresponding fixed point was discussed in the context of 
the random bond Ising model (Khmel'nitzkii 1975, Fishman and Aharony 1978)'r. 

To study the true trail problem, we must be able to discriminate between trajectories 
with the same silhouette. For the m-vertex trail model, we have not been able to find 
a closed Hamiltonian. We therefore limit our study to the two-vertex trails. Note 
that this is identical to the m-vertex trails on the square lattice or on the diamond 
lattice. To study the two-vertex trails, we consider a replicated version of the X Y  
model. On each lattice site we define 2n variables SP', Sp with the following trace rules: 

Tr(Sp')k =Tr(Sp)k = O  k = 1 , 2 , .  . . . (7a)  
Tr SP'S? =Tr(Sf'Sp)(S?'Sf) = Sap (7b) 

Tr(Sp'Sp)k = O  for k = 3 , 4 , .  . . . (7c) 
The value of the trace on other monomials is zero. The constraint (7c) is required to 
remove all vertices of third or higher order. The Hamiltonian is 

U (I 

+ W e  are grateful to Aharony and Fishman for bringing this to our attention. 
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where z is the monomer fugacity. The second term is necessary to cancel dimers 
arising from the expansion of the first term. The generating function is then 

GOR(z)  = lim (SASk) = lim Tr SA'S:, e-% 
n-rO n-0 

To transform this to a field theory, we have to introduce three types of fields 4?, 
4;, and a real field (I,: conjugate to Sp', Sf and Sf's;, respectively. The resulting 
field theory (details will be published elsewhere) contains not only linear and cubic 
terms (with imaginary couplings) but interaction terms like i(I,4'+ which couples two 
types of fields. The linear term in $ is eliminated by a shift of the origin. Comparison 
of the coefficients of the quadratic term shows that the 4 field become massless while 
(I, is still massive and can be ingegrated out from the partition function completely. 
The resultant effective theory of 4 is an isotropic O(2n)  theory with a cubic symmetry 
breaking term I;, ( $ ~ " + r # " ) ' .  Again, this term is irrelevant near four-dimension, so 
that the two-vertex trail is in the same universality class as the self-avoiding walk. In 
this case, however, the transiton is second order for any loop fugacity in contrast to 
the silhouette problem discussed above. The argument above can be extended to other 
u-vertex trails with appropriate introduction of more field variables. 

In order to consider k-tolerant walks we generalise the approach used above. 
Again, we define 2n variables f p  and xp ( a  = 1 , .  . . , n) at each site. Each trajectory 
of the walker going from the origin to R is uniquely represented by the free product 
of the form XAxA.. . ffx:f:x:. . . f k x k ,  where each adjacent pair xtXj is associated 
to the arrow from i to j. (Here, the free product implies that we make words from 
Xf and xf without any reduction rule.) Since we have n replicas, we can use any other 
replica to do the same as above. We use the replica trick to eliminate all the 
disconnected graphs as usual, so that we do not regard any free product with mixed 
replica indices to have graphic representation on the lattice. Thus the set 9 of all the 
free products of XP, xf is much bigger than its subset Y of free products with graphic 
representations. The trace rule is as follows. Tr is zero on RY. Tr on Y depends on 
the model. For the k-tolerant walk, Tr is zero on free products which contains 1 factors 
of ( fpxp)  for 1 > k, since more than k visits to the same site are not allowed. Otherwise 
Tr is one on Y Since we are on a finite lattice, this trace rule ensures that the subset 
of Y on which Tr is non-zero is a finite sett. This is important to justify several 
interchanges of order of operations in the following (we take the thermodynamic limit 
at the final stage). We regard Tr to be a linear map, i.e., for any f and 
g E Y Tr (af + P g )  = a Tr f + P Tr g, where a, P E R. The generating function for the 
k-tolerant walks may simply be expressed as 

Go,(R) = n-0 lim Tr[xAsP,({x, X } ) x k ]  (10) 

with z = w/s (here, again we must respect the order of variables) and 

t The formalism works only for finite k. The order of thermodynamic limit and the k + m limit are not 
interchangeable. 
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where V is the number of lattice points. Note that the products of x and ff variables 
are calculated as free products. 

a 

The next step is to Gaussian transform this to a field theory of & and 4;. 
We have 

(3, (13) 

where A is the matrix for the quadratic form in { } of (12) and 
r m  

Here note that sequences (words) in mY' produced by the expansion of the exponential 
factor give no contribution to CP, since Tr vanishes. Our trace rule guarantees that CP 
is a finite order polynomial of 1+P12. Since all the values of Tr are non-negative, all 
the coefficients of CP are non-negative. Moreover, CP is bounded from above (even in 
the thermodynamic limit) by exp(2,, IpP I2/4s). Therefore, if s is sufficiently large, 
the resulting field theory is stable. 

If we expand the obtained effective Lagrangian as before we get almost the same 
form as for the silhouette of the a-vertex trail. Hence, again from the general statement 
against symmetry breaking of the isotopic fixed point for the n -* 0 limit, we conclude 
that the k-tolerant walk is also in the same universality class as the 1-tolerant walk = 
self-avoiding walk. 

We are very grateful to A Aharony and S Fishman for discussion on the tricritical 
behaviour. We are also grateful to K Newman for a useful conversation and to B 
Friedman for carefully reading the manuscript. This work is supported, in part, by 
NSF through the MRL grant DMR-80-20250. 
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